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Answer all questions in the spaces provided.

1 The function y(x) satisfies the differential equation
dy

— = f(x,

4 =Ty
where f(x,y) =x+3 +siny
and y(l)=1

(a) Use the Euler formula

Vil =Vr T hf(xra yr)

with 4 = 0.1, to obtain an approximation to y(1.1), giving your answer to four
decimal places. (3 marks)

(b) Use the formula

Yr+1 = Vr—1 +2hf(xra yr)

with your answer to part (a), to obtain an approximation to y(1.2), giving your
answer to three decimal places. (3 marks)
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4
2 (a) Find the value of the constant £ for which £ sin2x is a particular integral of the
differential equation
d2y )
) +y =sin2x (3 marks)
(b) Hence find the general solution of this differential equation. (4 marks)
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0
3 (a) Explain why J 4xe™* dx is an improper integral. (1 mark)
1
(b) Find J4xe_4xdx. (3 marks)
oo
(c) Hence evaluate J 4xe ™ dx, showing the limiting process used. (3 marks)
1
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4 By using an integrating factor, find the solution of the differential equation
dy 3 4 3
4y = 3)2
Al )
given that y = % when x =1. (9 marks)
QUESTION
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(b) (i) Given that y =In(2 —¢¥), find —, —5 and —

10
5 (a) Write down the expansion of cos4x in ascending powers of x up to and including
the term in x*. Give your answer in its simplest form. (2 marks)
dy d%y d3y

dx’ dx? dx3

3

d
(You may leave your expression for JJ; unsimplified.) (6 marks)

(ii) Hence, by using Maclaurin’s theorem, show that the first three non-zero terms in the
expansion, in ascending powers of x, of In(2 —e¥) are

—x—x?—x3 (2 marks)
(c) Find
lim [xIn(2 —¢e%)
- {m (3 marks)
QUESTION
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6 The polar equation of a curve C; is
r=2(cos —sinf), 0<0<2rn
(a) (i) Find the cartesian equation of Cj . (4 marks)

(ii) Deduce that C; is a circle and find its radius and the cartesian coordinates of its
centre. (3 marks)

(b) The diagram shows the curve C, with polar equation

r=4+sinf, 0<0<2n

® >
0 Initial line
(i) Find the area of the region that is bounded by C, . (6 marks)
(ii) Prove that the curves C; and C, do not intersect. (4 marks)
(iii) Find the area of the region that is outside C; but inside C, . (2 marks)
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1
Given that x =2, x >0, ¢t > 0 and y is a function of x, show that:

7 (a)
dy 1dy
i) —=22—; 2 marks
(i) & & (. )
¢y &y dy
i) —=4r—=+4+2—. 3 marks
(i) dx? de2  dt ( /
1
(b) Hence show that the substitution x = #2 transforms the differential equation
d?y 2 dy 3 5
x——(8x“+1)—+4+12x"y = 12x
e )4 y
into
dy  dy
— —4—+3y =3¢ 2 marks
a2 a7 ( /
(c) Hence find the general solution of the differential equation
d?y 2 dy 3 5
@—(8)6 +1)—+ 12x"y = 12x
giving your answer in the form y = f(x). (7 marks)
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